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Control of a Structure with Two
Closely Spaced Frequencies

For optimal linear quadratic Gaussian (LQG) control, the
gains are obtained from a 4 x 4 Riccati equation. Closed-form
expressions were derived for the special important case of

K. Xu,* P. Warnitchai,* and T. Igusaj
Northwestern University, Evanston, Illinois 60208 b\h\ = b2h2 = h = (4)

Introduction

T HIS Note explores the effectiveness and limitations of
linear feedback control on a structure with closely spaced

natural frequencies. Closed-form expressions are presented for
the fundamental case of a structure with two modes controlled
by a single force. Three algorithms are investigated: velocity
feedback, pole allocation, and optimal control. Derivations of
the results have been presented elsewhere.1

Gains for Three Control Algorithms
The equations for the closed-loop system are

(1)
u(t)= -gx(t)-hx(t) (2)

Here, A = diag{co^, w J 2 ) » g = 2co2 (g i , g 2 ] , and h =
2<joa{hl, h 2 ] , where o>M/ are the open-loop natural frequencies
and ua = (COMI + o)W2)/2. The parameter /3 = (coM2-<^«i)/(2coc)
gives the spacing of the natural frequencies. The natural fre-
quencies are closely spaced if (3<^ 1. Without loss of generality,
it is assumed that {3>0. The eigenvalue problem is

(3)

where bh and bg are outer products of column and row vec-
tors.

For velocity feedback control, the gains Z?//z/ = h and g/ = 0
yield equal values for the diagonal elements of the matrix bh
in Eq. (3). The corresponding closed-loop damping ratios are1

£/ = h ± Re V/z2 -/32. When h </3, the radical is purely imagi-
nary, and fi = & = /*. However, when /z>0, the radical be-
comes purely real, and fo-^O as h increases. Thus, fe has an
upper bound /3.

With pole allocation control, it is possible to make both
damping ratios increase monotonically with the feedback
gains. A natural scheme is to make the damping ratios equal.
Velocity feedback control achieves the desired pole alloca-
tion when /z</3. However, when h>j3, it is necessary to
use the following nonzero displacement feedback gains1:
-big\ = b2g2 = g = (/z2-/32)/(2/3). The resulting closed-loop
damping ratios are $\ = $2 = h. The displacement feedback
gains become infinite when /3-* 0, as expected from control-
lability theory.
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and -bigi = b2g2 = g =V/*2 + /32-/3. The displacement gaing
is expressed in terms of h to eliminate the explicit dependence
on the weighting factor R of the quadratic performance index.
This is convenient since the displacement gains for the other
algorithms are in terms of h. The corresponding closed-loop
damping ratios are1

fy- = h ± Re J(/3 - V/*2 + /32)2 - j32 (5)

When /z<V3"/3, the outer radical is purely imaginary, and
fj = f2 = /z. However, when h >V3/3, the radical is real, and f2
decreases. Unlike the velocity feedback case, & approaches /3
instead of 0 as h increases and has an upper bound of VJ/3
instead of /3.

The relationships between the closed-loop damping ratios
and the velocity feedback gain h are shown in Fig. la. When
/z</3, all three algorithms yield identical results. However,
when h >V3^/3, pole allocation provides the most damping to
the system, and velocity feedback provides the least damping.

Response Index
To evaluate the effectiveness of the three control algo-

rithms, the time integral of the structural energy is used as a
response index:

£ = i (6)
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Fig. 1 Properties of the closed-loop system: a) modal damping ratios
and b) response indexes.
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stable region

Fig. 2 Stability diagram.

where the various $(0 are the displacement components of the
transition matrix for the closed-loop system. The trace indi-
cates that an average is taken over all possible initial states
satisfying \x(0)\ = 1 and \x(0)\ = 0. Analytical expressions for
E were developed for the case b\ = b2\ the results are1

E = (P2 + h2)/({32h) for velocity feedback and for pole alloca-
tion with h </3, E = (P6 + 6h2l32 + h4)/(4(32h3) for pole alloca-
tion with h >/5, and

(7)

for optimal control. For all three algorithms, £" — 00 as /3^0,
as expected.

Figure Ib shows how the response index varies with the
feedback gain h. For h </3, the three algorithms are almost
equally effective in reducing E. However, for larger gains,
velocity feedback and pole allocation actually yield larger E as
h increases. Only optimal control yields a response index that
decreases monotonically with h . The asymptotic behavior of E
for increasing h is1 E ~h/(32 for velocity feedback, E ~h/4j32

for pole allocation, and E-1/J3 for optimal control. These
results were illustrated by a numerical investigation of an an-
tenna mast.1

Stability Conditions
If the open-loop parameters of the structure are not known

with certainty, then the matrix A in Eq. (3) will have unknown
frequency spacing /3 and off-diagonal elements pu2

a. (Small
uncertainties in wa are relatively unimportant.) Given a set of
control parameters, it has been rigorously shown that the in-
stability condition is1

(8)

(9)
when /3*<0 and

min {brp,hrp}<$< max { brp, 0* + hrp }

when /3*>0. Here, br = (bl/b2-b2/bl)/4, hr = (hl/h2-h2/
hi)/4, and 0* = (blhl + b2h2)(gl/hl-g2/h2)/2 are control-
related parametersv (It is assumed that b\h\>Q and b2h2>0.
This condition makes the diagonal elements of bh positive; it
also assures that the average of the closed-loop modal damping
ratios is positive.)

The shapes of the unstable and stable regions are shown in
the p - 13 space in Fig. 2 when /3* < 0. The stable regions are two
infinite, cone-shaped areas bounded by rays with slopes br and
hr . The point labeled /30 corresponds to the assumed value for
the structural parameters, i.e., the assumed model is p - 0 and
j3 = j3o. If the model is accurate, then the actual parameter
value would differ only slightly from the assumed value, and
the corresponding point in the p - /3 space would be in a small
neighborhood of /30. Conversely, if the model is inaccurate,
then the point corresponding to the actual parameter value
may be quite far from /30 . The robustness of the structure with
respect to modeling errors can be measured by the distance
from 00 to the boundaries of the unstable region. This distance
is small if 1) the structure has very closely spaced natural fre-
quencies, i.e., | j30 1 is small, and 2) either \hr\ or \br is large.

For either case, small modeling errors may result in instability.
Although |3* governs the size of the unstable region, it does not
affect the distance between 00 and the boundary of the un-
stable region. These results were illustrated by a numerical
investigation of the antenna mast.1

Conclusions
The paper has shown the following: 1) The normalized

difference of the open-loop natural frequencies (3 governs
the effectiveness and robustness of the control algorithms.
2) Velocity feedback, pole allocation, and optimal control
yield responses that are nearly equal for small gains but are
significantly different for velocity gains on the order of /3 or
greater. Optimal control consistently yields the lowest re-
sponses. 3) The lower bound for the response of optimally
controlled structures is on the order of 1/0. Thus, structures
with small 0 (i.e., closely spaced natural frequencies) cannot be
effectively controlled by a single control input. 4) It is possible,
through pole allocation, to increase the modal damping of the
closed-loop system by increasing the feedback gains. However,
when the velocity gains are larger than 0, this algorithm is
ineffective in controlling the response. 5) The stable region is
bounded by two cones, with geometry determined by the con-
trol parameters. A system always becomes more robust as 0
increases.
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Introduction

L OOSELY speaking, a point along a reference extremal is
called a conjugate point, if its state, time coordinate can

be reached along a neighboring extremal with equal cost. As a
typical example, consider the problem of finding the minimum
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